47 research outputs found

    Intensity and directionality of bat echolocation signals

    Get PDF
    The paper reviews current knowledge of intensity and directionality of bat echolocation signals. Recent studies have revealed that echolocating bats can be much louder than previously believed. Bats previously dubbed “whispering” can emit calls with source levels up to 110 dB SPL at 10 cm and the louder open space hunting bats have been recorded at above 135 dB SPL. This implies that maximum emitted intensities are generally 30 dB or more above initial estimates. Bats' dynamic control of acoustic features also includes the intensity and directionality of their sonar calls. Aerial hawking bats will increase signal directionality in the field along with intensity thus increasing sonar range. During the last phase of prey pursuit, vespertilionid bats broaden their echolocation beam considerably, probably to counter evasive maneuvers of eared prey. We highlight how multiple call parameters (frequency, duration, intensity, and directionality of echolocation signals) in unison define the search volume probed by bats and in turn how bats perceive their surroundings. Small changes to individual parameters can, in combination, drastically change the bat's perception, facilitating successful navigation and food acquisition across a vast range of ecological niches. To better understand the function of echolocation in the natural habitat it is critical to determine multiple acoustic features of the echolocation calls. The combined (interactive) effects, not only of frequency and time parameters, but also of intensity and directionality, define the bat's view of its acoustic scene

    Echolocating Bats Cry Out Loud to Detect Their Prey

    Get PDF
    Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4–7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae) ranged between 122–134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats with similar hunting habits, prey detection range represents a unifying constraint on the emitted intensity largely independent of call shape, body size, and close phylogenetic relationships

    Dynamics of the echolocation beam during prey pursuit in aerial hawking bats

    Get PDF
    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision" than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation

    Scene analysis in the natural environment

    Get PDF
    The problem of scene analysis has been studied in a number of different fields over the past decades. These studies have led to a number of important insights into problems of scene analysis, but not all of these insights are widely appreciated. Despite this progress, there are also critical shortcomings in current approaches that hinder further progress. Here we take the view that scene analysis is a universal problem solved by all animals, and that we can gain new insight by studying the problems that animals face in complex natural environments. In particular, the jumping spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust solutions to scene analysis problems encountered in the natural environment. By examining the behaviors of these seemingly disparate animals, we emerge with a framework for studying analysis comprising four essential properties: 1) the ability to solve ill-posed problems, 2) the ability to integrate and store information across time and modality, 3) efficient recovery and representation of 3D scene structure, and 4) the use of optimal motor actions for acquiring information to progress towards behavioral goals

    Variation in Courtship Ultrasounds of Three Ostrinia Moths with Different Sex Pheromones

    Get PDF
    Moths use ultrasounds as well as pheromones for sexual communication. In closely related moth species, variations in ultrasounds and pheromones are likely to profoundly affect mate recognition, reproductive isolation, and speciation. The European corn borer, Ostrinia nubilalis, and its Asian congeners, Ostrinia furnacalis and Ostrinia scapulalis, exhibit within-species and between-species variation in their pheromone communication. Recently, we reported ultrasound communication in O. furnacalis; however, variations in ultrasounds in the three congeners have not been addressed to date. Here we investigated features of ultrasound production and hearing in O. nubilalis and O. scapulalis, and compared them with those of O. furnacalis. As in O. furnacalis, males of O. nubilalis and O. scapulalis produced ultrasounds during courtship by rubbing specialized scales on the wings against scales on the thorax. The covering of these scales with nail polish muffled the sounds and significantly reduced mating success in O. nubilalis, showing the importance of ultrasound signaling in mating. The ultrasounds produced by O. nubilalis and O. scapulalis were similar, consisting of long trains of pairs of pulses with a main energy at 40 kHz, but distinctly different from the ultrasound produced by O. furnacalis, consisting of groups of pulses peaking at 50 kHz and with substantially more energy up to 80 kHz. Despite overall similarities, temporal features and patterns of amplitude modulation differed significantly among the geographic populations of O. nubilalis and O. scapulalis, which differed in pheromone type. In contrast, no significant difference in hearing was found among the three species with regard to the most sensitive frequencies and hearing threshold levels. The patterns of variations in the songs and pheromones well reflected those of the phylogenetic relationships, implying that ultrasound and pheromone communications have diverged concordantly. Our results suggest that concordant evolution in sexual signals such as courtship ultrasounds and sex pheromones occurs in moths

    Active Listening for Spatial Orientation in a Complex Auditory Scene

    Get PDF
    To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal–motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10–20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate “terminal buzz” decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar “strobe groups,” clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal–motor control that directly impacts the signals used for perception

    Hearing in Geometrid Moths

    No full text

    Probing the natural scene by echolocation in bats

    Get PDF
    Bats echolocating in the natural environment face the formidable task of sorting signals from multiple auditory objects, echoes from obstacles, prey and the calls of conspecifics. Successful orientation in a complex environment depends on auditory information processing, along with adaptive vocal-motor behaviors and flight path control, which draw upon 3-D spatial perception, attention and memory. This article reviews field and laboratory studies that document adaptive sonar behaviors of echolocating bats, and point to the fundamental signal parameters they use to track and sort auditory objects in a dynamic environment. We suggest that adaptive sonar behavior provides a window to bats’ perception of complex auditory scenes

    Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus

    No full text
    Echolocation allows bats to orient and localize prey in complete darkness. The sonar beam of the big brown bat, Eptesicus fuscus, is directional but broad enough to provide audible echo information from within a 60–90 deg. cone. This suggests that the big brown bat could interrogate a natural scene without fixating each important object separately. We tested this idea by measuring the directional aim and duration of the bat's sonar beam as it performed in a dual task, obstacle avoidance and insect capture. Bats were trained to fly through one of two openings in a fine net to take a tethered insect at variable distances behind the net. The bats sequentially scanned the edges of the net opening and the prey by centering the axis of their sonar beam with an accuracy of ∼5 deg. The bats also shifted the duration of their sonar calls, revealing sequential sampling along the range axis. Changes in duration and directional aim were correlated, showing that the bat first inspected the hole, and then shifted its gaze to the more distant insect, before flying through the net opening. Contrary to expectation based on the sonar beam width, big brown bats encountering a complex environment accurately pointed and shifted their sonar gaze to sequentially inspect closely spaced objects in a manner similar to visual animals using saccades and fixations to scan a scene. The findings presented here from a specialized orientation system, echolocation, offer insights into general principles of active sensing across sensory modalities for the perception of natural scenes
    corecore